Contraction of general transportation costs along solutions to Fokker–Planck equations with monotone drifts

نویسندگان

  • Luca Natile
  • Mark A. Peletier
  • Giuseppe Savaré
چکیده

We shall prove new contraction properties of general transportation costs along nonnegative measure-valued solutions to Fokker– Planck equations in Rd , when the drift is a monotone (or λ-monotone) operator. A new duality approach to contraction estimates has been developed: it relies on the Kantorovich dual formulation of optimal transportation problems and on a variable-doubling technique. The latter is used to derive a new comparison property of solutions of the backward Kolmogorov (or dual) equation. The advantage of this technique is twofold: it directly applies to distributional solutions without requiring stronger regularity, and it extends the Wasserstein theory of Fokker–Planck equations with gradient drift terms, started by Jordan, Kinderlehrer and Otto (1998) [14], to more general costs and monotone drifts, without requiring the drift to be a gradient and without assuming any growth conditions.  2010 Elsevier Masson SAS. All rights reserved. Résumé On démontre de nouvelles propriétés de contraction des coûts du transport global en suivant des solutions de type mesures positives de l’équation de Fokker–Planck où la déviation est un opératateur monotone ou λ-monotone. Une nouvelle approche duale a été développée pour les estimations de contraction : elle s’appuie sur la formulation duale de Kantorovitch des problèmes de transport optimal et sur une technique de doublement des variables. Cette dernière est utilisée pour obtenir une nouvelle propriété de comparaison de solutions de l’équation de Kolmogorov rétrograde (ou de son équation duale). Les avantages de cette technique sont de deux types : d’une part, elle s’applique directement aux solutions au sens des distributions sans demander plus de réguralité, d’autre part, elle généralise la théorie de Wasserstein des équations de Fokker–Planck avec une déviation de type gradient, introduite par Jordan, Kinderlehrer et Otto (1998) [14], à des coûts plus généraux et à des déviations monotones, sans demander que les déviations soient des gradients et sans condition de croissance.  2010 Elsevier Masson SAS. All rights reserved. MSC: 35Q84; 35K10; 60J60; 82C31

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak differentiability of solutions to SDEs with semi-monotone drifts

‎In this work we prove Malliavin differentiability for the solution to an SDE with locally Lipschitz and semi-monotone drift‎. ‎To prove this formula‎, ‎we construct a sequence of SDEs with globally Lipschitz drifts and show that the $p$-moments of their Malliavin derivatives are uniformly bounded‎.

متن کامل

جواب‌های وابسته به زمان معادلات فوکر- پلانک غیر خطی مربوط به توابع دلخواه از آنتروپی تسالیس

The nonlinear Fokker-Plank equations can be related to generalized entropies. We investigate the stationary solutions of Fokker- Plank equations which are related to entropies defined as arbitrary functions of Tsallis entropy. Also the transient solutions of the equations are determined for linaer drifts.

متن کامل

Existence of Global Weak Solutions to Fokker–planck and Navier–stokes–fokker–planck Equations in Kinetic Models of Dilute Polymers

This survey paper reviews recent developments concerning the existence of global weak solutions to Fokker–Planck equations with unbounded drift terms, and coupled Navier–Stokes–Fokker–Planck systems of partial differential equations, that arise in finitely extensible nonlinear elastic (FENE) type kinetic models of incompressible dilute polymeric fluids in the case of general noncorotational flow.

متن کامل

Spectral Galerkin Approximation of Fokker–planck Equations with Unbounded Drift

This paper is concerned with the analysis and implementation of spectral Galerkin methods for a class of Fokker–Planck equations that arises from the kinetic theory of dilute polymers. A relevant feature of the class of equations under consideration from the viewpoint of mathematical analysis and numerical approximation is the presence of an unbounded drift coefficient, involving a smooth conve...

متن کامل

Uniqueness for solutions of Fokker–Planck equations on infinite dimensional spaces

We develop a general technique to prove uniqueness of solutions for Fokker– Planck equations on infinite dimensional spaces. We illustrate this method by implementing it for Fokker–Planck equations in Hilbert spaces with Kolmogorov operators with irregular coefficients and both non-degenerate or degenerate second order part. 2000 Mathematics Subject Classification AMS: 60H15, 60J35, 60J60, 47D07

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010